
 1

UPC Language Specifications

V1.0

Tarek A. El-Ghazawi

School of Computational Sciences
George Mason University

4400 University Drive
Fairfax, VA 22030-4444

tarek@gmu.edu

William W. Carlson
Jesse M. Draper

IDA Center for Computing Sciences
17100 Science Drive
Bowie, MD 20715

{wwc, jdraper}@super.org

February 25, 2001

 2

Acknowledgments

Many scientists have contributed to the ideas and concepts behind these specifications.
They are too many to mention here, but we would like to cite the contributions of David
E. Culler, Kathy Yelick, Eugene Brooks, and Karen Warren who have contributed to the
initial UPC language concepts and specifications. We also would like to acknowledge
the role of the participants in the first UPC workshop, held in May 2000 in Bowie,
Maryland, and in which the specifications of this version were discussed. In particular
we would like to acknowledge the support and participation of Compaq, Cray, HP, Sun,
and CSC. We would like also to acknowledge the abundant input of Kevin Harris and
Sébastien Chauvin and the efforts of Lauren Smith. Finally, the efforts of Brian Wibecan
and Greg Fischer were invaluable in bringing these specifications to the final (version
1.0) state.

 3

Table of contents

INTRODUCTION .. 5

1 SCOPE.. 5

2 NORMATIVE REFERENCES...................................... 5

3 TERMS, DEFINITIONS AND SYMBOLS.................. 6

4 CONFORMANCE ... 7

5 ENVIRONMENT... 7

5.1 Conceptual Models...7
5.1.1 Translation environment .. 7
5.1.2 Execution environment... 8

6 LANGUAGE.. 10

6.1 Notations ..10

6.2 Predefined identifiers...10
6.2.1 THREADS.. 11
6.2.2 MYTHREAD ... 11
6.2.3 UPC_MAX_BLOCK_SIZE .. 11

6.3 Expressions ..11
6.3.1 The upc_localsizeof operator .. 11
6.3.2 The upc_blocksizeof operator .. 12
6.3.3 The upc_elemsizeof operator ... 13
6.3.4 Shared pointer arithmetic ... 13
6.3.5 Cast and Assignment Expressions.. 15

6.4 Declarations..15
6.4.1 Type qualifiers ... 16
6.4.2 The shared and reference type qualifiers ... 17
6.4.3 Declarators.. 19

 4

6.5 Statements and blocks...22
6.5.1 Barrier Statements ... 23
6.5.2 Iteration statements ... 24

6.6 Preprocessing directives..27
6.6.1 UPC pragmas.. 28

7 LIBRARY... 29

7.1 Standard headers ..29

7.2 General utilities..29
7.2.1 Termination of all threads.. 30

7.3 Memory allocation functions...30
7.3.1 The upc_global_alloc function.. 30
7.3.2 The upc_all_alloc function.. 31
7.3.3 The upc_local_alloc function .. 31
7.3.4 The upc_free function... 32
7.3.5 The upc_threadof function... 33
7.3.6 The upc_phaseof function... 33
7.3.7 The upc_addrfield function.. 33

7.4 Locks...34
7.4.1 Type... 34
7.4.2 The upc_lock_init function.. 34
7.4.3 The upc_global_lock_alloc function .. 34
7.4.4 The upc_all_lock_alloc function .. 35
7.4.5 The upc_lock function... 35
7.4.6 The upc_lock_attempt function.. 36
7.4.7 The upc_unlock function.. 36

7.5 Shared String Handling ...36
7.5.1 The upc_memcpy function.. 36
7.5.2 The upc_memget function.. 37
7.5.3 The upc_memput function.. 38
7.5.4 The upc_memset function.. 38

REFERENCES ... 39

APPENDIX A: UPC VERSUS ANSI C SECTION
NUMBERING .. 40

 5

Introduction
1 UPC is a parallel extension to ANSI C. UPC follows the distributed shared-memory

programming paradigm. The first version of UPC, known as version 0.9, was published
in May of 1999 as technical report [CARLSON99] at the Institute for Defense Analyses
Center for Computing Sciences.

2 This version of UPC, denoted version 1.0, has been initially discussed at the UPC
workshop, held in Bowie, Maryland, 18-19 May, 2000. The workshop had about 50
participants from industry, government, and academia. This version was adopted with
modifications in the UPC mini workshop meeting held during Supercomputing 2000, in
November 2000, in Dallas, and finalized in February 2001.

1 Scope
1 This document focuses only on the UPC specifications that extend ANSI C to an explicit

parallel C based on the distributed shared memory model. All ANSI C specifications as
per ISO/SEC 9899 [ISO/SEC00] are considered a part of these UPC specifications, and
therefore will not be addressed in this document.

2 Small parts of ANSI C [ISO/SEC00] may be repeated for self-containment and clarity of
a subsequent UPC extension definition.

2 Normative references
1 The following document and its identified normative references in addition to these

documents constitute provisions of these UPC specifications. This will not apply to
subsequent revisions of this document.

2 ISO/SEC 9899: 1999(E), Programming languages - C [ISO/SEC00]

3 The section numbering of this document is consistent with the previous document
[ISO/SEC00]. The correspondence between the subsection of this document and the
previous document, however, is given in Appendix A.

4 In the beginning of each UPC specifications subsection, the corresponding ANSI-C
[ISO/SEC00] subsection will be noted.

 6

3 Terms, definitions and symbols
1 For the purpose of these specifications the following definitions apply.

2 Other terms are defined where they appear in italic type or on the left hand side of a
syntactical rule.

3.1
1 access

<execution-time action> to read or modify the value of an object by a thread.

3.1.1
1 local access

<execution-time action> to read or modify, by a given thread, the value of an object in
either the private space of that thread, or in the shared address locations that have affinity
to that thread.

3.1.2
1 private access

<execution-time action> to read or modify the value of an object in the private address
space of a given thread by that thread.

3.1.3
1 remote access

<execution-time action> to read or modify, by a given thread, the value of an object
whose address is in the shared address space portion which has affinity to the other
threads.

3.2
1 affinity

a logical association of a portion of the shared address space with a given thread.

 7

3.3
1 shared object

A shared object is an object that resides in the shared address space.

3.4
1 shared pointer

A shared pointer is a pointer to a shared object.

3.5
1 thread

a program task in execution with access not only to a private memory space, but also to a
shared memory space which can be accessed by other threads.

4 Conformance
1 In this document, “shall” is to be interpreted as a requirement on a UPC implementation;

conversely, “shall not” is to be interpreted as a prohibition.

2 If a “shall” or “shall not” requirement of a constraint is violated, the behavior will be

undefined. Undefined behavior is indicated by “undefined behavior” or by the omission

of any explicit definition of behavior from the UPC specification.

5 Environment

5.1 Conceptual Models

5.1.1 Translation environment

 8

5.1.1.1 Threads environment
A UPC program is translated under either a “static THREADS” environment or a

“dynamic THREADS” environment. Under the “static “THREADS” environment, the

number of threads to be used in execution is indicated to the translator in an

implementation-defined manner. If the actual execution environment differs from this

number of threads, the behavior of the program is undefined.

5.1.2 Execution environment

1 This subsection provides the UPC parallel extensions of [ISO/SEC00: Sec. 5.1.2]

2 Each thread has local data on which it operates and which are logically divided into a

private portion and a shared one. All operations on the private portion of the data are

exactly as described in [ISO/SEC00].

3 Each thread may access shared data that have affinity to any thread; the semantics of

these accesses are described herein.

4 Except for implied barriers at program startup and termination, there is no implicit

synchronization among the threads.

5 Some library calls may imply synchronization among threads. These will be explicitly

noted.

5.1.2.1 Program startup
1 In the execution environment of a UPC program, derived from the hosted environment as

defined in ANSI C [ISO/SEC00], each thread calls the UPC program’s main () function.

5.1.2.2 Program termination
1 A program is terminated by the termination of all the threads (there is an implied barrier at

program end) or a call to the function upc_global_exit ().

 9

2 Thread termination follows the ANSI C definition of program termination in [ISO/SEC00:

Sec. 5.1.2.2.3]. A thread is terminated by reaching the } that terminates the main

function, by a call to the exit function, or by a return from the initial main. Note that

thread termination does not imply the completion of all I/O and that shared data allocated

by a thread either statically or dynamically shall not be freed before UPC program

termination.

Forward references: upc_global_exit (7.2).

5.1.2.3 Program execution
1 Unless declared objects or references are qualified as strict, there is no change to the

ANSI C execution model as applied to an individual thread. This implies that translators

are free to reorder and/or ignore operations (including shared operations) as long as the

restrictions found in [ISO/SEC00: Sec. 5.1.2.3] are observed.

2 A further restriction applies to strict references. For each strict reference, the restrictions

found in [ISO/SEC00: Sec. 5.1.2.3] must be observed with respect to all threads if that

reference is eliminated (or reordered with respect to all other shared references in its

thread).

3 Equally, the behavior of strict shared references can be defined as follows. Label each

shared access S(i,j) or R(i,j), where S represents a strict shared access (read or write), R

represents a relaxed shared access (read or write), i is the thread number making the

access, j is an integer which monotonically increases as the evaluation of the program (in

the abstract machine) proceeds from startup through termination. The "abstract order" is

a partial ordering of all accesses by all threads such that an access x(a,b) occurs before

y(c,d) in the ordering if a==c and b < d. The "actual order(k)" for thread k is another

partial order in which x(a,b) occurs before y(c,d) if thread k observes the x access before

it observes the y access. A thread observes all accesses present in the abstract order

which effect either the data written to files by it or its input and output dynamics as

described in [ISO/SEC00: Sect 5.1.2.3]. The least requirements on a conforming

implementation are that:

• x(a,b) must "occur before" y(c,d) in actual order(e) if a == c and a == e and b < d

 10

• x(a,b) must "occur before" y(c,d) in actual order(e) if a == c and b < d and ((x ==
S) or (y == S))

UNLESS such a restriction has no effect on either the data written into files at program

termination OR the input and output dynamics requirements described in [ISO/SEC00:

Sec. 5.1.2.3].

6 Language

6.1 Notations

1 In the syntax notation used in this clause, syntactic categories (nonterminals) are

indicated by italic type, and literal words and character set members (terminals) by bold

type. A colon (:) following a nonterminal introduces its definition. Alternative

definitions are listed on separate lines, except when prefaced by the words “one of”. An

optional symbol is indicated by the subscript “opt”, so that

 { expressionopt }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not italicized and

words are separated by spaces instead of hyphens.

6.2 Predefined identifiers

1 This subsection provides the UPC parallel extensions of section 6.4.2.2 in [ISO/SEC00].

 11

6.2.1 THREADS

1 THREADS is an integer equal to the number of independent computational units, i.e.

threads. Under the “dynamic THREADS” translation environment, THREADS is a non-

modifiable lvalue of type int. Under the “static THREADS” translation environment,

THREADS is a constant.

6.2.2 MYTHREAD

1 MYTHREAD is defined at execution time; it specifies the unique thread index. The range

of possible values is 0..THREADS-1.

6.2.3 UPC_MAX_BLOCK_SIZE

1 UPC_MAX_BLOCK_SIZE is a predefined integer constant value. It indicates the

maximum value allowed in a layout qualifier for shared data. It may be defined in upc.h,

or it may be defined by the compiler.

6.3 Expressions

1 This subsection provides the UPC parallel extensions of section 6.5 in [ISO/SEC00].

6.3.1 The upc_localsizeof operator

upc_localsizeof unary-expression

 upc_localsizeof (type-name)

Constraints

1 The upc_localsizeof operator shall apply only to shared objects or shared-qualified

types.

 12

Semantics

1 The upc_localsizeof operator returns the size, in bytes, of the local portion of its

operand, which may be a shared object or a shared-qualified type. If the block size is

indefinite and the operand is an expression, it returns zero on all threads which do not

have affinity to the object. Otherwise it returns the same value on all threads; the value is

the maximum of the size of objects with affinity to any one thread.

2 The type of the result is size_t.

6.3.2 The upc_blocksizeof operator

 upc_blocksizeof unary-expression

 upc_blocksizeof (type-name)

Constraints

1 The upc_blocksizeof operator shall apply only to shared objects or shared-qualified

types.

Semantics

1 The upc_blocksizeof operator returns the block size of the operand, which may be a

shared object or a shared-qualified type. The block size is the value specified in the

layout qualifier of the type declaration. If there is no layout qualifier, the block size is 1.

The result of upc_blocksizeof is a compile-time constant.

2 If the operator of upc_blocksizeof has indefinite block size, the value of

upc_blocksizeof is 0.

3 The type of the result is size_t.

Forward references: indefinite block size (6.4.2).

 13

6.3.3 The upc_elemsizeof operator

 upc_elemsizeof unary-expression

 upc_elemsizeof (type-name)

Constraints

1 The upc_elemsizeof operator shall apply only to shared objects or shared-qualified

types.

Semantics

1 The upc_elemsizeof operator returns the size, in bytes, of the highest-level

(leftmost) type that is not an array. For non-array objects, upc_elemsizeof returns

the same value as sizeof.

2 The type of the result is size_t.

6.3.4 Shared pointer arithmetic

1 When an expression that has integer type is added to or subtracted from a shared pointer,

the result has the type of the shared pointer operand. If the shared pointer operand points

to an element of a shared array object, and the shared array is large enough, the result

points to an element of the shared array. If the shared array is declared with indefinite

block size, the result of the shared pointer arithmetic is identical to that described for

normal C pointers in [ISO/SEC00 sec. 6.5.6], except that the thread of the new pointer

shall be the same as that of the original pointer. If the shared array has a definite block

size, then the following example describes pointer arithmetic:

shared [B] int *p, *p1; /* B a positive integer */

int i;

 14

p1 = p + i;

2 After this assignment the following equations must hold in any UPC implementation. In

each case the / operator indicates truncating integer division and the % operator returns a

nonnegative value less than its right hand side:

upc_phaseof (p1) == (upc_phaseof(p) + i) % B

upc_threadof (p1) == (upc_threadof(p) + (upc_phaseof(p) +

i)/B) % THREADS

3 In addition, the correspondence between shared and private addresses and arithmetic is

defined using the following constructs:

T *P1, *P2;

shared T *S1, *S2;

P1 = (T*) S1; /* legal if S1 has affinity to MYTHREAD */

P2 = (T*) S2; /* legal if S2 has affinity to MYTHREAD */

4 For all S1 and S2 that point to two distinct elements of the same shared array object

which have affinity to the same thread:

S1 and P1 shall point to the same object.

S2 and P2 shall point to the same object.

The expression ((upc_addrfield (S2) - upc_addrfield(S1)) shall

evaluate to the same value as ((P2 - P1) * sizeof(T)).

If S1 < S2 then upc_addrfield(S1) shall be < upc_addrfield(S2) otherwise

upc_addrfield(S1) shall be > upc_addrfield(S2)

 15

Forward references: upc_threadof (7.3.5), upc_phaseof (7.3.6),

upc_addrfield (7.3.7).

6.3.5 Cast and Assignment Expressions

Constraints

1 A shared type qualifier shall not appear in a type cast of an object that is not shared-

qualified; i.e., private pointers cannot be cast to shared.

Semantics

1 A cast or assignment from one shared pointer to another in which either the type size or

the block size differs results in a pointer with a zero phase, unless one of the types is

“shared void *”, the generic shared pointer.

2 If a pointer with a shared-qualified type is cast to a pointer whose type is not shared-

qualified, and the affinity of the shared data is not to the current thread, the result is

undefined.

6.4 Declarations

1 UPC extends the declaration ability of C to allow shared types, shared data layout across

threads, and ordering constraint specifications.

Constraints
1 The declaration specifiers in a given declaration shall not include, either directly or

through one or more typedefs, both strict and relaxed.

2 The declaration specifiers in a given declaration shall not specify more than one block

size, either directly or indirectly through one or more typedefs.

 16

Syntax
1 The following is the declaration definition as per [ISO/SEC00] section 6.7, repeated here

for self-containment and clarity of the subsequent UPC extension specifications.

2 declaration:

declaration-specifiers init-declarator-listopt ;

3 declaration-specifiers:

storage-class-specifier declaration-specifiersopt

type-specifier declaration-specifiersopt

type-qualifier declaration-specifiersopt

function-specifier declaration-specifiersopt

4 init-declarator-list:

init-declarator

init-declarator-list , init-declarator

5 init-declarator:

declarator

declarator = initializer

Forward references: strict and relaxed type qualifiers (6.4.2).

6.4.1 Type qualifiers

1 This subsection provides the UPC parallel extensions of section 6.7.3 in [ISO/SEC00].

Syntax

1 type-qualifier:

const

restrict

volatile

shared-type-qualifier

reference-type-qualifier

 17

6.4.2 The shared and reference type qualifiers

Syntax

1 shared-type-qualifier:

shared layout-qualifieropt

2 reference-type-qualifier:

relaxed

strict

3 layout-qualifier:

[constant-expressionopt]

[*]

Constraints

1 A reference type qualifier shall appear in a qualifier list only when the list also contains a

shared type qualifier.

2 A shared type qualifier can appear anywhere a type qualifier can appear except that it

shall not appear in the specifier qualifier list of a structure declaration unless it qualifies a

pointer type.

3 A layout qualifier of [*] shall not appear in the declaration specifiers of a pointer.

Semantics

1 An object that has shared-qualified type shall exist in shared memory space and not in

private space. Any thread may reference a shared object. Shared objects are placed in

memory based on an affinity to a particular thread.

2 An object that has strict-qualified type behaves as described in section 5.1.2.3 of this

document.

3 An object that has relaxed-qualified type behaves as if it were not strict-qualified.

 18

4 The layout qualifier dictates the blocking factor for the type being shared qualified. This

factor is the nonnegative number of consecutive elements (when evaluating shared

pointer arithmetic and array declarations), which have affinity to the same thread. If the

optional constant expression is 0 or is not specified, all objects have affinity to the same

thread. If there is no layout qualifier, the blocking factor has the default value (1). The

blocking factor is also referred to as the block size.

5 A layout qualifier indicating that all array elements have affinity to the same thread is

said to specify indefinite block size.

6 The block size is a part of the type compatibility.

7 A shared void* pointer is assignment compatible with any shared pointer type.

8 If the layout qualifier is of the form ‘[*]’, the shared object is distributed as if it had a

block size of

(sizeof(a) / upc_elemsizeof(a) + THREADS – 1) / THREADS,

where ‘a’ is the array being distributed.

9 EXAMPLE 1: declaration of a shared scalar

strict shared int y;

strict shared is the type qualifier

10 EXAMPLE 2: automatic storage duration

void foo (void) {

shared int x; /* a shared automatic variable is not allowed */

shared int* y; /* a pointer to shared is allowed */

int * shared z; /*a shared automatic variable is not allowed*/

… }

 19

11 EXAMPLE 3: inside a structure

struct foo {

shared int x; /* this is not allowed */

shared int* y; /* a pointer to a shared object is allowed */

};

Forward references: shared array (6.4.3.2), pointer declarator (6.4.3.1).

6.4.3 Declarators

Syntax

1 The following is the declarator definition as per [ISO/SEC00] section 6.7.5, repeated here

for self-containment and clarity of the subsequent UPC extension specifications.

2 declarator:

pointeropt direct-declarator

3 direct-declarator:

identifier

(declarator)

direct-declarator [type-qualifier-listopt assignment-expressionopt]

direct-declarator [static type-qualifier-listopt assignment-expression]

direct-declarator [type-qualifier-list static assignment-expression]

direct-declarator [type-qualifier-listopt *]

direct-declarator (parameter-type-list)

direct-declarator (identifier-listopt)

4 pointer:

* type-qualifier-listopt

* type-qualifier-listopt pointer

5 type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier

 20

Constraints
1 No type qualifier list shall specify more than one block size, either directly or indirectly

through one or more typedefs.

2 No type qualifier list shall include both strict and relaxed either directly or

indirectly through one or more typedefs.

3 shared shall not appear in a declarator which has automatic storage duration, unless it

qualifies a pointer type.

Semantics
1 All static non-array shared-qualified objects have affinity with thread zero.

2 Inside a structure, no data can be declared as shared; only pointers that point to shared

objects can have the shared qualifier.

6.4.3.1 Pointer declarators
1 This subsection provides the UPC parallel extensions of section 6.7.5.1 in [ISO/SEC00].

Constraints

1 The cast of a shared pointer to a private pointer by a thread not having affinity with the

referenced object has an undefined result.

Semantics

1 A shared reference which is cast to non-shared will lose all qualities pertaining to being

shared.

2 Shared objects with affinity to a given thread can be accessed by either shared pointers or

private pointers of that thread.

3 EXAMPLE 1:

int i, *p;

shared int *q;

q = (shared int *)p; /* is not allowed */

 21

 if (upc_threadof(q) == MYTHREAD) p = (int *) q;

 /* is allowed */

6.4.3.2 Array declarators
1 This subsection provides the UPC parallel extensions of section 6.7.5.2 in [ISO/SEC00].

Constraints

1 When a UPC program is translated in the “dynamic THREADS” environment and the

type of the array is shared-qualified but not indefinite layout-qualified, the THREADS

lvalue shall occur exactly once in one dimension of the array declarator (including

through typedefs). Further, in such cases, the THREADS lvalue shall only occur either

alone or when multiplied by a constant expression.

Semantics

1 Elements of shared arrays are distributed in a round robin fashion, by chunks of block-

size elements, such that the I-th element has affinity with thread (floor (i/block_size) %

THREADS).

2 In an array declaration, the type qualifier applies to the elements.

3 EXAMPLE 1: declarations legal in either static or dynamic translation environments:

shared int x [10*THREADS];

shared [] int x [10];

4 EXAMPLE 2: declarations legal only in static translation environment:

shared int x [10+THREADS];

shared [] int x [THREADS];

shared int x [10];

 22

5 EXAMPLE 3: declaration of a shared array

shared [3] int x [10];

shared [3] is the type qualifier of an array, x, of 10 integers. [3] is the layout

qualifier.

6 EXAMPLE 4:

typedef int S[10];

shared [3] S T[3*THREADS];

shared [3] applies to the underlying type of T, which is int, regardless of the

typedef. The array is blocked as if it were declared:

shared [3] int T[3*THREADS][10];

shared [] double D[100];

All elements of the array D have affinity to thread 0. No THREADS dimension is allowed

in the declaration of D.

shared [] long *p;
x = p[i];

All elements referenced by subscripting or otherwise dereferencing p have affinity to the

same thread. That thread may be any thread; it does not have to be thread 0.

6.5 Statements and blocks

1 This subsection provides the UPC parallel extensions of section 6.8 in [ISO/SEC00].

 23

Syntax

1 statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
synchronization-statement

6.5.1 Barrier Statements

Syntax

1 synchronization-statement:

upc_notify expressionopt;

upc_wait expressionopt;

upc_barrier expressionopt;

upc_fence;

Constraints

1 expression shall be an integer expression.

2 Each thread shall execute an alternating sequence of upc_notify and upc_wait

statements, starting with a upc_notify and ending with a upc_wait statement. A

synchronization phase consists of the execution of all statements between one

upc_notify and the next.

 Semantics

1 A upc_wait statement does not complete until all threads have completed the

upc_notify statement which begins the synchronization phase. Note that this implies

that all threads are in the same synchronization phase as they complete the upc_wait

statement.

 24

2 The upc_fence statement is equivalent to a null strict reference. This insures that all

shared references issued before the fence are complete before any after it are issued.

3 One implementation of upc_fence (or “remote memory barrier”) may be achieved by a

null strict reference: {static shared strict int x; x = x; }. The

construct acts as a fence for the shared references occurring before or after it.

4 A null strict reference is implied before a upc_notify statement and after a
upc_wait statement.

5 The upc_wait statement will generate a runtime error if the value of its expression (if

given) does not equal the value of the expression (if given) by the upc_notify

statement which starts the synchronization phase.

6 The upc_wait statement will generate a runtime error if the value of its expression (if

given) differs from any expression (if given) on the upc_wait and upc_notify

statements issued by any thread in the current synchronization phase.

7 The upc_barrier statement is equivalent to the compound statement:
 { upc_notify barrier_value; upc_wait barrier_value; }

8 EXAMPLE 1: The following will result in a runtime error:
 { upc_notify; upc_barrier; upc_wait; }
as it is equivalent to
 { upc_notify; upc_notify; upc_wait; upc_wait; }

9 Between the upc_notify and the upc_wait statements, references to shared data

shall be permitted, but they have no synchronization relationship to the upc_notify

and upc_wait statements.

6.5.2 Iteration statements

1 This subsection provides the UPC parallel extensions of section 6.8.5 in [ISO/SEC00].

 25

Syntax

1 iteration-statement:

while (expression) statement

 do statement while (expression);

 for (expressionopt; expressionopt; expressionopt) statement

 for (declaration-expressionopt; expressionopt) statement

 upc_forall (expressionopt; expressionopt; expressionopt; affinityopt) statement

 26

affinity:

expressionopt

continue

Constraints:

1 The expression for affinity shall be a pointer to a shared object or an integer expression.

Semantics:

1 The affinity field specifies to each thread which iterations of the loop body of the

upc_forall statement it executes.

2 When affinity is a reference to shared memory space, the loop body of the upc_forall

statement is executed for each iteration in which the value of MYTHREAD equals the

value of upc_threadof(affinity).

3 When affinity is an integer expression, the loop body of the upc_forall statement is

executed for each iteration in which the value of MYTHREAD equals the value

pmod(affinity, THREADS), where pmod(a,b) is evaluated as

(a>=0)?(a%b):(((a%b)+b)%b)

4 When “affinity” is continue, the loop body of the upc_forall statement is

executed for every iteration on every thread.

5 When no affinity is specified, the execution behavior of the upc_forall statement is

the same as it would be if the affinity were continue.

6 If the loop body of a upc_forall statement contains one or more upc_forall

statements, either directly or through one or more function calls, the construct is called a

"nested upc_forall" statement. In a "nested upc_forall", the outermost upc_forall

statement that has an affinity expression which is not continue is called the

"controlling upc_forall" statement. All upc_forall statements which are not

 27

"controlling" in a "nested upc_forall" behave as if their affinity expressions were

continue.

7 Unless all threads enter the beginning of the upc_forall statement during the same

synchronization phase, the behavior is undefined.

8 If any iteration of a upc_forall statement (loop body or control expressions)

produces a side-effect needed by another iteration of the same upc_forall statement,

the behavior is undefined.

9 If a thread terminates or if it executes a upc_barrier, upc_notify, upc_wait or

return statement within the dynamic scope of a upc_forall statement, the result is

undefined. If a thread branches outside a upc_forall statement, the result is

undefined.

10 EXAMPLE 1: Nested UPC forall:

main () {

 int i,j,k;

 shared float *a, *b, *c;

 upc_forall(i=0; i<N; i++; continue)

 upc_forall(j=0; j<N; j++; &a[j])

 upc_forall (k=0; k<N; k++; &b[k])

 a[j] = b[k] * c[i];

}

This example executes all iterations of the “i” and “k” loops on every thread, and

executes iterations of the “j” loop on those threads were upc_threadof(&a[j])

equals the value of MYTHREAD.

6.6 Preprocessing directives

1 This subsection provides the UPC parallel extensions of section 6.10 in [ISO/SEC00].

 28

6.6.1 UPC pragmas

Semantics

1 If the preprocessing token upc immediately follows the pragma, then no macro

replacement is performed and the directive shall have one of the following forms:

 #pragma upc strict

 #pragma upc relaxed

These pragmas control the default behavior of code which follows. Under a strict default,

all accesses to shared objects that are not qualified as relaxed are in strict mode. Under a

relaxed default, all accesses to shared objects that are not qualified as strict are in relaxed

mode.

2 These directives do not affect shared objects that are explicitly qualified as either strict or

relaxed.

3 Unless these directives are used, shared references and objects which are neither strict

qualified nor relaxed qualified behave in an implementation defined manner which is

either strict default or relaxed default. Users wishing portable programs are strongly

encouraged to specify default behavior either by using these directives or by including

upc_strict.h or upc_relaxed.h.

4 The pragmas shall occur either outside external declarations or preceding all explicit

declarations and statements inside a compound statement. When they are outside

external declarations, they apply until another such pragma or the end of the translation

unit. When inside a compound statement, they apply until the end of the compound

statement; at the end of the compound statement the state of the pragmas is restored to

that preceding the compound statement. If these pragmas are used in any other context,

their behavior is undefined.

 29

7 Library

7.1 Standard headers

1 This subsection provides the UPC parallel extensions of section 7.1.2 in [ISO/SEC00].

2 The standard headers are

<upc_strict.h> <upc_relaxed.h> <upc.h>

3 upc_strict.h shall contain at least:

#pragma upc strict

#include <upc.h>

4 upc_relaxed.h shall contain at least:

#pragma upc relaxed

#include <upc.h>

5 upc.h shall contain at least:

#define barrier upc_barrier

#define barrier_notify upc_notify

#define barrier_wait upc_wait

#define forall upc_forall

#define fence upc_fence

7.2 General utilities

1 This subsection provides the UPC parallel extensions of section 7.20 in [ISO/SEC00].

 30

7.2.1 Termination of all threads

Synopsis

upc_global_exit(int status)

Description

1 upc_global_exit () will flush all I/O, release all memory, and terminate the

execution for all active threads.

7.3 Memory allocation functions

7.3.1 The upc_global_alloc function

Synopsis

1 #include <upc.h>

shared void *upc_global_alloc(size_t nblocks, size_t

nbytes);

nblocks : number of blocks

nbytes : block size

Description

1 Allocates a contiguous shared memory space blocked as if the following declaration were

used:

shared [nbytes] char[nblocks * nbytes].

2 Intended to be called by one thread; no synchronization with other threads is implied. If

called by multiple threads, all threads which make the call get different allocations.

 31

7.3.2 The upc_all_alloc function

Synopsis

1 #include <upc.h>

shared void *upc_all_alloc(size_t nblocks, size_t

nbytes);

nblocks : number of blocks

nbytes : block size

Description

1 upc_all_alloc is a collective function, with implied synchronization before all

threads execute the function call.

2 upc_all_alloc allocates memory with a layout as if the following declaration were

used:

shared [nbytes] char[nblocks * nbytes].

3 The upc_all_alloc function returns the same pointer value on all threads.

4 The dynamic lifetime of an allocated object extends from the time any thread completes

the call to upc_all_alloc until all threads have deallocated the object.

7.3.3 The upc_local_alloc function

Synopsis

1 #include <upc.h>

shared [] void *upc_local_alloc(size_t nblocks, size_t

nbytes);

nblocks : number of blocks

nbytes : block size

 32

Description

1 Returns a pointer to nblocks * nbytes bytes of shared memory space with affinity

to the calling thread and with type:

shared[] void *.

2 upc_local_alloc implies no synchronization with other threads.

3 upc_local_alloc is similar to malloc() except that it returns a shared pointer

value. It is not a collective operation.

Constraints

1 The return value of the allocation functions shall be cast to a shared pointer of the correct

block size.

7.3.4 The upc_free function

Synopsis

1 #include <upc.h>

void upc_free(shared void *ptr);

Description

1 The upc_free function frees the dynamically allocated shared memory pointed to by

ptr. If ptr is a null pointer, no action occurs. Otherwise, if the argument does not

match a pointer earlier returned by the upc_local_alloc, upc_global_alloc,

or upc_all_alloc function, or if the space has been deallocated by a previous call to

upc_free, the behavior is undefined.

 33

7.3.5 The upc_threadof function

Synopsis

1 #include <upc.h>

size_t upc_threadof(shared void *ptr);

Description

1 The upc_threadof function returns the number of the thread that has affinity to the

shared object pointed to by ptr.

7.3.6 The upc_phaseof function

Synopsis

1 #include <upc.h>

size_t upc_phaseof(shared void *ptr);

Description

1 The upc_phaseof function returns the phase field of the shared pointer argument.

7.3.7 The upc_addrfield function

Synopsis

1 #include <upc.h>

size_t upc_addrfield(shared void *ptr);

Description

1 The upc_addrfield function returns an implementation-defined value reflecting the

“local address” of the object pointed to by the shared pointer argument.

 34

7.4 Locks

7.4.1 Type

1 The type declared is
 upc_lock_t

2 The type upc_lock_t is an opaque UPC type. Variables of type upc_lock_t are

meant, therefore, to be manipulated through pointers only.

7.4.2 The upc_lock_init function

Synopsis

1 #include <upc.h>

void upc_lock_init(upc_lock_t *ptr);

Description

1 Initializes the lock pointed to by ptr. After the upc_lock_init function is

completed, the first thread calling the upc_lock function will succeed in obtaining this

lock.

2 Intended to be called by one thread; no synchronization with other threads is implied.

7.4.3 The upc_global_lock_alloc function

Synopsis

1 #include <upc.h>

upc_lock_t *upc_global_lock_alloc(void);

Description

1 The upc_global_lock_alloc function dynamically allocates a lock and returns a

pointer to it.

 35

2 The lock pointed to is initialized in the same way upc_lock_init(upc_lock_t

*ptr) would have done it.

3 Intended to be called by one thread; no synchronization with other threads is implied.

7.4.4 The upc_all_lock_alloc function

Synopsis

1 #include <upc.h>

upc_lock_t *upc_all_lock_alloc(void);

Description

1 The upc_all_lock_alloc function dynamically allocates a lock and returns a

pointer to it. The upc_all_lock_alloc function is a collective function, with

implied synchronization before all threads execute the function call. All threads receive

the same pointer value.

2 The lock pointed to is initialized in the same way upc_lock_init(upc_lock_t

*ptr) would have done it.

7.4.5 The upc_lock function

Synopsis

1 #include <upc.h>

void upc_lock(upc_lock_t *ptr);

Description

1 The upc_lock function locks a shared variable, of type upc_lock_t, pointed to by

the pointer given as argument.

2 If the lock is not used by another thread, then the thread making the call gets the lock and

the function returns. Otherwise, the function keeps trying to get access to the lock.

 36

7.4.6 The upc_lock_attempt function

Synopsis

1 #include <upc.h>

int upc_lock_attempt(upc_lock_t *ptr);

Description

1 The upc_lock_attempt function tries to lock a shared variable, of type

upc_lock_t, pointed to by the pointer given as argument.

2 If the lock is not used by another thread, then the thread making the call gets the lock and

the function returns 1. Otherwise, the function returns 0.

7.4.7 The upc_unlock function

Synopsis

1 #include <upc.h>

void upc_unlock(upc_lock_t *ptr);

Description

1 The upc_unlock function frees the lock and does not return any value.

7.5 Shared String Handling

7.5.1 The upc_memcpy function

Synopsis

1 #include <upc.h>

 37

void upc_memcpy(shared void *dst,

 shared const void *src,

 size_t n);

Description

1 The upc_memcpy function copies a block of memory from one shared memory area to

another shared memory area. The number of bytes copied is n. If copying takes place

between objects that overlap, the behavior is undefined.

2 The upc_memcpy function treats the dst and src pointers as if each of them pointed

to a shared memory space on a single thread and therefore had type:

shared [] char[n]

The effect is equivalent to copying the entire contents from one shared array with this

type (the src array) to another shared array with this type (the dst array).

7.5.2 The upc_memget function

Synopsis

1 #include <upc.h>

void upc_memget(void *dst, shared const void *src,

 size_t n);

Description

1 The upc_memget function copies a block of memory from a shared memory area to a

private memory area on the calling thread. The number of bytes copied is n. If copying

takes place between objects that overlap, the behavior is undefined.

2 The upc_memget function treats the src pointer as if it pointed to a shared memory

space on a single thread and therefore had type:

shared [] char[n]

The effect is equivalent to copying the entire contents from one shared array with this

type (the src array) to a local array (the dst array) declared with the type

char[n].

 38

7.5.3 The upc_memput function

Synopsis

1 #include <upc.h>

void upc_memput(shared void *dst, const void *src,

 size_t n);

Description

1 The upc_memput function copies a block of memory from the calling thread’s private

memory area to a shared memory area. The number of bytes copied is n. If copying takes

place between objects that overlap, the behavior is undefined.

2 The upc_memput is equivalent to copying the entire contents from a local array (the

src array) declared with the type

char[n]

to a shared array (the dst array) with the type

shared [] char[n]

7.5.4 The upc_memset function

Synopsis

1 #include <upc.h>

void upc_memset(shared void *dst, int c,

 size_t n);

Description

1 The upc_memset function copies the value of c, converted to an unsigned char, to a

shared memory area. The number of bytes set is n.

 39

2 The upc_memset function treats the dst pointer as if it pointed to a shared memory

space on a single thread and therefore had type:

shared [] char[n]

The effect is equivalent to setting the entire contents of a shared array with this type (the

dst array) to the value c.

References
[CARLSON99] W. W. Carlson, J. M. Draper, D.E. Culler, K. Yelick, E. Brooks, and K.
Warren. Introduction to UPC and Language Specification. CCS-TR-99-157. IDA/CCS,
Bowie, Maryland. May, 1999.

[ISO/SEC00] ANSI. Programming Langauges-C. ISO/SEC 9899. May, 2000.

 40

Appendix A: UPC versus ANSI C section

numbering

UPC specifications
subsection

ANSI C specifications
subsection

1 1
2 2
3 3
4 4
5 5
6 6
6.1 6.1
6.2 6.4.2.2
6.3 6.5
6.4 6.7
6.4.1 6.7.3
6.4.3 6.7.5
6.5 6.8
6.6 6.10
7 7
7.1 7.1.2

Table A1. Mapping UPC subsection to ANSI C specifications subsections

